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Abstract

Breast cancer treatment involves complex medical procedures with high costs. These high costs
highlight the need for adequate insurance coverage. In Indonesia,most cancer insurance schemes
offer lump sum payouts upon diagnosis. In this study, we develop a cancer insurance scheme
that provides benefits for patients who need extended treatment periods until they are de-
clared cancer-free. This scheme is based on the possible transitions in the status of breast can-
cer patients, considering factors such as patient age, cancer stage and comorbidities. The time-
homogeneous Cox Markov model is used to assess the impact of various covariates on patient
status transitions and estimate the transition intensities between patient statuses. The proposed
models and methods are then applied to data from patients with breast cancer at Dr. Sardjito
Hospital, Yogyakarta, Indonesia. The application of the model to the data indicates that premi-
ums for both stand-alone benefit and endowment benefit cancer insurance policies tend to be
higher for older patients, those in advanced stages and those with hypertension. This developed
model is a valuablemethod for insurance companies to estimate the probability of treatment sta-
tus transitions and insurance premium rates in breast cancer patients, as well as to develop new
insurance products that are critically needed by patients.
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1 Introduction

Cancer is one of the critical non-communicable diseases that has gained worldwide attention.
Various types of cancer are characterized by their unique features, effects and different medical
treatment approaches. Breast cancer is themost prevalent cancer inwomen and causes the second-
highest rate ofmortality. According toGlobocan [14], therewere 19, 292, 789 reported cancer cases
worldwide in 2020, with 2, 261, 419 (11.7%) attributed to breast cancer.

Chemotherapy is one of the frequently recommended cancer treatment methods. After a pa-
tient is diagnosed with cancer, the doctor will create a treatment plan or chemotherapy schedule.
During this treatment process, the patient’s status may change; they may complete the treatment
successfully or, unfortunately, they may pass away while the process is ongoing. The survival
ability of cancer patients is influenced by the patient’s age and the stage of the cancer [3, 7]. It is in
part due to the functions of the organs of the human body, especially the liver and kidneys, which
decline with age [26]. Furthermore, comorbidities significantly affect the initiation, delays and
discontinuation of treatment [13]. The most common comorbidity experienced by cancer patients
is hypertension [8, 23]. Hypertension will increase cardiovascular risk, leading to an increased
risk of mortality in cancer patients [22]. Therefore, doctors always consider age, cancer stage and
hypertension when planning cancer treatment.

Each cancer patient encounters dual challenges concurrently: the medical treatment itself and
the associated treatment expenses, as highlighted in the study by [27]. The financial challenges
of cancer treatment expenses underscore the importance of adequate insurance coverage for indi-
viduals and families. Some cancer insurance schemes provide a lump sum insured if the insured
is diagnosed with cancer, regardless of the total treatment costs required until recovery. Other
schemes provide benefits at cost within a specific period during the insurance contract. In fact,
patients also need financial protection in the event that they needmore time to complete treatment
until they are declared cancer-free.

The multi-state model serves as a mathematical framework for representing systems that facil-
itate transitions among different states or conditions. Transition probabilities between states can
be determined by integrating transition intensity estimates derived from the Poisson model and
semi-parametric regression methods, such as Cox regression [4, 25]. In later studies, Andersen
and Perme [5] noted that a notable feature of the multistate model is that all hazard-basedmodels
in survival analysis can be utilized as transition intensities. Prominent hazard models include the
Cox model, the Gompertz model, the Gompertz-Makeham model and their extensions, such as
the hazard ratemodelwith theGompertz FlexibleWeibull distribution developed by [17]. Among
these various hazard models, the Cox model is particularly notable, as it allows the inclusion of
covariates that play a significant role in state transitions. In the Cox model, baseline hazard es-
timation can be performed using the maximum partial log-likelihood method [18] or the Taylor
series approximation [2]. Various assumptions regarding the time-dependent nature of transi-
tion intensities can be made, including homogeneous models, Markov models and semi-Markov
models [21].

Changes in cancer patient status are typically managed through multi-state models. Multi-
state models represent the evolution of patient status, similar to a sample path of a continuous-
timeMarkov chain, as observed in studies by [21, 12]. These multiple states correspond to distinct
phases of a patient’s journey throughout the cancer treatment process. The application of mul-
tistate models proves suitable for analyzing the time elapsed until a specific event transpires, as
discussed in the work by [20] and references to the Weibull distribution [29]. Compared to stan-
dard survival methods, the multi-state model offers more in-depth information about the effects

36



Y. W. Sari et al. Malaysian J. Math. Sci. 19(1): 35–51(2025) 35 - 51

of treatment in cancer clinical trials [19]. Consequently, the multistate model is a pertinent and
valuable modeling framework to understand cancer development and treatment dynamics [7, 4].

Several studies have been conducted to calculate critical illness insurance premiums consider-
ing changes in patient status. Baione and Levantesi [6] employed a multi-state model to estimate
critical illness insurance premiums, basing the transition probabilities between patient states on
prevalence rates. In 2019, Pasaribu et al. [24] used a multiple-state continuous Markov chain
model to calculate critical illness insurance premiums, with transition intensities derived from
CMIWorking Paper 50. A discrete-time approach in amultistate non-homogeneousMarkov chain
model is another method applicable for modeling critical illness insurance [9]. Similarly, Taraly et
al. [28] conducted a study where transition intensities between patient states were estimated us-
ing the 2019 IndonesianMortality Table. The Gompertz-Makehammodel and the Bayesianmodel
are additional approaches utilized for estimating transition intensities [1, 16]. Fathoni et al. [11]
calculated the transition probabilities between patient states (cancer-free, early stage, advanced
stage and deceased) by solving the Kolmogorov forward differential equation. These transition
probabilities were then used to compute critical illness insurance premiums for breast cancer.

Driven by the need for a comprehensive yet easily interpretable model capable of assessing
status transitions in breast cancer patients during treatment, while considering factors such as
age, disease severity and comorbidities, this study utilizes the Cox Proportional Hazards model
within a multi-state framework. This approach not only facilitates straightforward interpretation
but also eliminates the need for specific distributional assumptions and efficiently handles cen-
sored data. Furthermore, the multi-state model is applied to the modeling of critical illness insur-
ance for breast cancer. While previous research has employed the Cox model within multi-state
frameworks, it has not yet been used in insurance modeling. Additionally, unlike traditional crit-
ical illness insurance plans that offer benefits upon breast cancer diagnosis, this study proposes
an insurance scheme in which benefits are paid if the treatment process takes longer than ini-
tially planned. In addition, this model offers valuable insights that can improve decision-making
across various clinical and financial aspects, particularly in relation to breast cancer treatment and
insurance planning.

In Section 2, we provide a model construction and the structure of multi-state models. Section
3 outline the methodology for pricing insurance. Moving on to Section 4, we present a case study
focused on breast cancer patients from the Dr. Sardjito Hospital in Yogyakarta, where the pro-
posed models and methods are applied. The concluding insights and discussions are presented
in Section 5. This organization ensures a systematic exploration of the proposed models, their
application to real-world data and a conclusive discussion of the findings.

2 Model Construction

The treatment journey for breast cancer patients invariably involves a sequence of chemother-
apy sessions and the duration, frequency and overall length of these cycles vary for each indi-
vidual. The severity or stage of cancer significantly influences the disparities in these aspects. In
the context of this study, the observation period for breast cancer patients spans a one-year ob-
servation period. Some patients complete their chemotherapy, while others also need a longer
time frame for their treatment. Unfortunately, some patients do not survive until the course of
chemotherapy is completed. The pivotal factors that influence the survival rates of cancer patients
are age, cancer stage and comorbidity [3, 7].
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Let {S(t)}t∈[0,T ] be a stochastic process defined in continuous time intervals [0, T ] and
S = {1, 2, 3} is a finite state space. Using a multiple-state model, the transitions between states
depict distinct phases in the breast cancer journey. State-1 signifies the status of a patient who
has been diagnosed and undergoing chemotherapy, State-2 indicates the status of successfully
completing a course of chemotherapy and State-3 represents the status of a deceased patient. This
modeling approach enriches our understanding of the varied trajectories breast cancer patients
can experience, contributing to a more nuanced understanding of their medical progression.

Figure 1: The transition scheme between states.

Using the previously defined state space, we illustrated the transitions between states as de-
picted in Figure 1. Transition 1 signifies the progression of a breast cancer patient from the di-
agnosis and chemotherapy phase to the completion of chemotherapy. Transition 2 illustrates the
shift in a patient’s status from being diagnosed and undergoing chemotherapy to the unfortunate
event of dying before completing the chemotherapy. Transition 3 captures the alteration in patient
status from complete treatment to succumbing to the disease. It is important to note that our fo-
cus was solely on changes in patient status within a single therapy cycle. Hence, we excluded the
consideration of patients who transition from completed chemotherapy status to chemotherapy
for a second cycle.

The transition probability, denoted as tP
ij
x , represents the likelihood that an insured individual

aged x will transition from state-i to state-j within the time interval t. The transition probability
is calculated using the formula,

tP
īi
x = exp

−∫ t

0

∑
i ̸=j

µij
x+udu

 , (1)

tP
ij
x =

∫ t

0
uP

īi
x µij

x+ut−uP
j̄j
x+udu, (2)

where µij
x+t represents the transition intensities or rates and u is the time interval (0 < u < t). The

transition rate reflects the instantaneous failure rate of moving from state-i to state-j, analogous
to the hazard function in survival analysis [15].

In this study, the Cox regression model is used to estimate the transition intensities. Let the
number of samples be n, then the transition intensity estimator of an individual h, where
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h = 1, 2, . . . n, can be written as,

µ̂ijh
x+t = hij(t|Zh) = hij0(t)exp

(∑
k

βijkZijkh

)
,

where for each transition from state-i to state-j, hij0(t) is the baseline hazard function, βijk is the
Cox regression coefficient for the k-th covariate, which is assumed to be constant and Zijkh is the
value of k-th covariate of individual h.

The Cox regression coefficients of transition from state-i to state-j are estimated using maxi-
mum partial log-likelihood estimation method. Furthermore, if the event is defined as the tran-
sition from state-i to state-j and a sequence of event times exists, then th represents the time of

the h-th event. The cumulative baseline hazard rate is given by Hij0(t) =

∫ t

0

hij0(s)ds and the

estimation of Hij0(t) is

Ĥij0(t) =
∑
th≤t

Nijth∑
lij∈Rth

exp
(∑

k βijkZijklij

) ,
where Nijth is the number of individuals who transitioning from state-i to state-j at th, lij is the
individual who tend to get the event and Rth is the set of individuals who have the risk of getting
the event at time th.

Themulti-stateMarkovmodel can be divided into two types based on the assumption of transi-
tion intensity functions over time: the timehomogeneousMarkovmodel and the non-homogeneous
model. In the time homogeneous Markov model, all transition intensities are assumed to be
constant over time. In contrast, the non-homogeneous model assumes that transition intensities
change over time. The non-homogeneousMarkov process can bemodeled non-parametrically, for
example, using the Kaplan-Meier approach [21].

3 Insurance Rates Model

Cancer insurance is a type of critical illness insurance that protects against financial risks due
to cancer. In cancer insurance, the insured will receive benefits if diagnosed with cancer or if they
experience certain conditions related to cancer. Additionally, like other critical illness insurances,
cancer insurance typically includes death benefits. We define a formula to calculate the pure pre-
mium for an N-year cancer insurance policy based on the previously discussed multi-state model.
This premium is calculated under the assumption of a time-homogeneous Cox Markov model.

In this study, the critical illness insurancemodel for breast cancer assumed that pure premiums
are paid once (a single pure premium) when the contract is signed. Therefore, the premium rate
can be seen as the expected present value (EPV) by the unit of insurance benefits. In this study,
we discuss two insurance models based on the type of insurance benefits: stand-alone benefit and
endowment benefit.

3.1 Stand-alone benefit

Astand-alone benefit in breast cancer insurance refers to a separate insurance policy that covers
specific risks related to cancer that are not included in an existing insurance policy. In this study,
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the insurance policy provides individual protection for the risk of remaining in state-1 without
any connection to other insurance products.

If the insured is still alive and has not yet completed the series of chemotherapy until the end
of the contract, the insured will receive B1. As a result, the premium of the N -year stand-alone
benefit (SA) is the discounted value of B1, assuming he remains in status-1 untilN -year later. As
defined in the transition scheme for breast cancer patients in Figure 1, the premium of theN -year
stand-alone benefit is expressed as follows,

Ā
(SA)
x:N = B1NP 1̄1

x vN , (3)

where

NP 1̄1
x = exp

(
−
∫ N

0

µ12
x+u + µ13

x+udu

)

= exp

(
−h120 exp

(∑
k

β12kZ12k

)
N − h130 exp

(∑
k

β13kZ13k

)
N

)
,

expresses the probability of an insured agedx being still alive andnot having completed chemother-

apy at time N . In addition, v is the discount factor or v =
1

(1 + r)
, where r is the interest rate. If

the r is continuously compounded rate of interest, then vN = exp (−rN) [10, 30].

3.2 Endowment benefit

The endowment insurance policy provides a combination of stand-alone benefits with an ad-
ditional death benefit. The model assumes that the benefits in this breast cancer insurance model
are provided if the insured dies or has not completed the chemotherapy course at the maturity
time of the insurance contract. Therefore, the premium of the endowment benefit (EB) is the sum
of the premium of death benefit and the premium of stand-alone benefit described in the previous
sub-section.

The death benefit is paid if the insured dies during the insurance contract, say N years. If the
policy is continuous, the benefit is paid immediately upon the insured’s death. It is assumed that
if the insured dies before or after completing chemotherapy, they will receive B2. According to
[10], the premium for an N -year death benefit (DE) for an individual currently aged x is defined
as,

Ā
(DE)
x:N =B2

[∫ N

0
tP

1̄1
x µ13

x+tv
tdt+

∫ N

0
tP

12
x µ23

x+tv
tdt

]
. (4)

Equation (4) can be explained as the sum of the premium of insured who died before or after
completing the chemotherapy course. The present value of the expectation that the insured aged
xwill die before completing chemotherapy between ages x and x+N is defined as,∫ N

0
tP

1̄1
x µ13

x+tv
tdt

=
h130 exp (

∑
k β13kZ13k)

h120 exp (
∑

k β12kZ12k) + h130 exp (
∑

k β13kZ13k) + r

×

[
1− exp

(
−N

(
h120 exp

(∑
k

β12kZ12k

)
+ h130 exp

(∑
k

β13kZ13k

)
+ r

))]
.
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Meanwhile, the present value of the expectation that the insured aged xwill die after completing
chemotherapy between ages x and x+N is expressed by,∫ N

0
tP

1̄2
x µ23

x+tv
tdt =

ac

(a+ b− c)

[
1− exp(−(c+ r)N)

c+ r
− 1− exp(−(a+ b+ r)N)

a+ b+ r

]
,

where

a = µ12
x+t = h120 exp

(∑
k

β12kZ12k

)
,

b = µ13
x+t = h130 exp

(∑
k

β13kZ13k

)
,

c = µ23
x+t = h230 exp

(∑
k

β23kZ23k

)
.

Furthermore, the premium for the endowment insurance policy is calculated by,

Ā
(EB)
x:N = Ā

(DE)
x:N + Ā

(SA)
x:N . (5)

4 Application and Results

In this section, we applied the multi-state model to data from breast cancer patients at Dr.
Sardjito Hospital in Yogyakarta. A total of one hundred sixty-eight patients in the Integrated
Cancer Installation "Tulip" at Dr. Sardjito Hospital were observed from July 2018 to June 2020.
The data were obtained from [11]. Based on these data, the probabilities that a breast cancer
patient aged x will die, complete therapy, or still undergo therapy at age x + 1 were calculated.
The EPV was also calculated to determine the cancer insurance premium rate. In its application,
the software R is used and some of the packages utilized include survival and mstate.

According to medical research, cancer stages, age and comorbidities significantly affect the
survival of breast cancer patients [3, 23]. Hypertension is the most common comorbidity among
breast cancer patients [8, 23]. Hypertension is considered by doctors in the treatment of breast
cancer because it can cause cardiovascular complications. As a result, cancer stages, age and hy-
pertension status are used as independent variables (covariates) to estimate transition intensities.

Table 1: The covariates.

Covariate Patient grouping

Cancer stage 1. early and intermediate stage
2. advanced stage

Ages 1. < 50 years
2. ≥ 50 years

Comorbidity 1. without hypertension
2. hypertension

Table 1 contains information about these variables. We categorized breast cancer patients into
two groups based on their cancer stage: early-stage and intermediate-stage (stages I, II and III)
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and advanced-stage (stage IV). We combined early-stage and intermediate-stage cancer patients
into a single group because, based on the data we used, there was no significant difference in
survival between the two stages.

Furthermore, Table 2 presents the estimated coefficients for each covariate at each transition.
The state transition of breast cancer patients is defined in Figure 1.

Table 2: The estimation of coefficient of covariates.

Covariate Transition Notation Coefficient p−value

Cancer stage 1 β̂121 -0.5593 0.00782
2 β̂131 1.9657 0.00259
3 β̂231 2.3486 0.00014

Age 1 β̂122 -0.3576 0.05335
2 β̂132 -1.2056 0.02240
3 β̂232 0.2494 0.65843

Comorbidity 1 β̂123 -0.3924 0.06378
2 β̂133 0.6690 0.18982
3 β̂233 0.1320 0.83212

As indicated in Table 2, analysis of the breast cancer patient data from Dr. Sardjito Hospital
reveals that the p−values for cancer stage across all transitions, age between transitions 1 to 2 and
1 to 3 and hypertension between transition 1 to 2 are all below 0.1. This suggests that the stage of
cancer has a significant influence on all status transitions among breast cancer patients at the 10%
significance level. In contrast, age only significantly influences the transitions from status 1 to 2
and from status 1 to 3, whereas hypertension has a significant effect solely on the transition from
status 1 to 2.

For subsequent analysis, only those covariates demonstrating significant effects are considered.
The findings from the proportional hazards test, as shown in Table 3, reveal that the p−values for
all covariates associated with the three patient status transitions exceed 0.05. This suggests that,
at the 5% significance level, the relationship between each covariate and the time to event adheres
to the proportional hazards assumption.

Table 3: The result of proportional hazard test.

Covariate Transition Notation Chisq p−value

Cancer stage 1 β̂121 3.07 0.080
2 β̂131 1.79 0.181
3 β̂231 1.34 0.248

Age 1 β̂122 2.73 0.098
2 β̂132 0.36 0.547

Comorbidity 1 β̂123 1.86 0.170

The cumulative baseline hazard plots for the three transitions in the status of breast cancer
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patients exhibit a near-linear pattern (see Figure 2). This suggests that the time-homogeneous
model assumption (constant baseline hazard over time) can be applied to this dataset.

Figure 2: Cumulative baseline hazard of the Cox proportional hazard model.

Table 4 illustrates the probability of breast cancer patients transitioning within one year for
each age group, cancer stage and hypertension status. The transition probability of patients who
die after completing a chemotherapy cycle is influenced only by the cancer stage (Table 5). Pa-
tients under 50 years of age with early and intermediate stage cancer are more likely to com-
plete chemotherapy than older patients with more advanced cancer. In the transition from state-
1 to state-3, the higher the cancer stage, the greater the probability of dying before completing
chemotherapy. However, Table 4 shows that this probability decreases with increasing age. Gen-
erally, breast cancer patients with hypertension had a higher chance of dying within a year than
patients without hypertension. In addition, people without hypertension have a higher chance of
completing chemotherapy.
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Table 4: The transition probabilities 1P
ij
x .

Status
transition Age interval

Cancer stage
Early and

intermediate stage Advanced stage

1 → 1 Hypertension
< 50 0.14348 0.17349
≥ 50 0.26624 0.37755

Without hypertension
< 50 0.05910 0.10448
≥ 50 0.14317 0.26483

1 → 2 Hypertension
< 50 0.80949 0.46960
≥ 50 0.71182 0.44722

Without hypertension
< 50 0.90321 0.58231
≥ 50 0.83753 0.57185

1 → 3 Hypertension
< 50 0.04219 0.32862
≥ 50 0.01798 0.15088

Wihout hypertension
< 50 0.03181 0.27613
≥ 50 0.01430 0.13064

Table 5: The transition probabilities 1P
ij
x .

Status transition
Cancer stage

Early and
intermediate stage Advanced stage

2 → 2 0.99090 0.91209

2 → 3 0.00910 0.08791

Next, the expected present value per unit benefit (premium rate) of the stand-alone benefit
and endowment benefit are calculated for a 1-year contract period. In this case study, the discount
interest rate is 5.75%. The interest rate is the reference interest rate for monetary policy in Indone-
sia, set by Bank Indonesia and called the BI rate. Tables 6−7 illustrates the rates of pure single
insurance premium in the event of specific risks. Furthermore, the amount of insurance premium
is calculated by multiplying the premium rate by the benefit units obtained within one year. In
this study, the stand-alone and death benefit units are denoted as B1 and B2, respectively.

Table 6 illustrates the insurance premium rate that cancer patients must pay to receive a benefit
of B1 if the chemotherapy course is not completed by the end of the contract. For example, the
premium rate for early-stage hypertension patients under 50 years old is 0.13546. This means that
the premium the insured must pay is 13.546% of B1. As compensation, the patient will receive an
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insurance benefit ofB1 at the end of the contract if chemotherapy has not been completed. Premi-
ums for patients without hypertension are lower than for those with hypertension. Additionally,
patients with a higher cancer stage have to pay a more expensive premium. The same applies to
patients who are 50 years old or older.

Table 6: The premium rate of stand-alone benefit policy.

Age interval
Cancer stage

Early and
intermediate stage Advanced stage

Hypertension
< 50 0.13546 0.16379
≥ 50 0.25136 0.35645

Without hypertension
< 50 0.05579 0.09865
≥ 50 0.13517 0.25003

Under the assumptionB1 = B2 = B, based on Table 7, early-stage or intermediate-stage breast
cancer patient under 50 years with hypertension must pay 18.150% ofB to receiveB if they die or
B if they have not completed chemotherapy within one year of diagnosis. Table 7 also shows that
the premium increases with age and cancer stage. The insurance premium rate of breast cancer
patients with hypertension are higher than patients without hypertension.

Table 7: The premium rate of endowment benefit policy.

Age interval
Cancer stage

Early and
intermediate stage Advanced stage

Hypertension
< 50 0.18150 0.51300
≥ 50 0.27276 0.52723

Without hypertension
< 50 0.09276 0.40548
≥ 50 0.15402 0.40930

Furthermore, Figures 3−6 demonstrate how variations in insurance contract length (N) and
baseline hazard (hij0) impact the performance of the breast cancer insurance premium calculation
model. The covariate combinations for each policy are denoted by letters as follows:

a: Early and intermediate stage, age < 50, with hypertension.

b: Early and intermediate stage, age ≥ 50, with hypertension.

c: Early and intermediate stage, age < 50, without hypertension.

d: Early and intermediate stage, age ≥ 50, without hypertension.
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e: Advanced stage, age < 50, with hypertension.

f: Advanced stage, age ≥ 50, with hypertension.

g: Advanced stage, age < 50, without hypertension.

h: Advanced stage, age ≥ 50, without hypertension.
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Figure 3: Breast cancer insurance premium at various N .
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Figure 4: Breast cancer insurance premium at various h120.
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Figure 5: Breast cancer insurance premium at various h130.
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Figure 6: Breast cancer insurance premium at various h230.

Equations (1) and (2) indicate that as t increases, the probability of a breast cancer patient not
completing the chemotherapy series decreases, while the probability of the patient passing away
rises. Therefore, the duration of the insurance policy contract influences the premium rate. Figure
3 shows that for a stand-alone insurance policy, the premium decreases as the contract length (N)
increases. However, the pattern of the impact of contract length on endowment policy premiums
is less clearly observable.

A data simulation was conducted to validate the impact of baseline hazard (hij0) on breast
cancer insurance premiums. An increase in the baseline hazard for the transition from state-1 to
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state-2 results in a reduction in both stand-alone and endowment insurance premiums (Figure
4). Additionally, the stand-alone premium decreases if the baseline hazard for the transition from
state-1 to state-3 rises. Conversely, the endowment insurance premium tends to increase as h130

rises (Figure 5). Figure 6 indicates that the baseline hazard for the transition from state-2 to state-3
has no effect on the stand-alone insurance premium; however, in the case of endowment insurance,
an increase in h230 leads to a higher premium.

5 Discussion and Concluding Remarks

We developed cancer insurance schemes based on the possible transition of the status of breast
cancer patients. The Cox model was used to assess the effect of multiple independent variables
(covariates) on patient status transitions and estimate transition intensities between patient sta-
tuses. According to the multiple-state model with survival framework analysis, cancer stage, age
and hypertension status are the three main factors influencing the change in the status of cancer
patients. According to the dataset we analyzed, the cancer stage and patient age influence the
likelihood of breast cancer patients transitioning to recovery or death within a year. Conversely,
comorbidities like hypertension only impact the probability of a status change to death in breast
cancer patients after they have completed the chemotherapy series.

The developed model represents a valuable tool for insurance companies to estimate the prob-
abilities of treatment outcomes in breast cancer patients. Within one year of a breast cancer di-
agnosis, every patient faces the possibility of completing chemotherapy or dying-either before or
after treatment completion. Patients in advanced stages with hypertension are more likely to die
than those without hypertension. The risk of a patient remaining in an incomplete chemother-
apy state one year after diagnosis increases with age and cancer stage. However, patients with
hypertension have a higher risk compared to those without hypertension.

This model also offers a beneficial method to estimate critical illness insurance premiums for
breast cancer patients, whether through stand-alone benefit policies or endowment benefit poli-
cies. For both the stand-alone benefit model and the endowment benefit model, insurance premi-
ums are higher for late-stage and elderly patients compared to earlier-stage and younger patients.
Additionally, in both insurance models, patients with comorbidities such as hypertension are ob-
ligated to pay higher premiums than those without hypertension.

This study concluded that the duration of the insurance contract significantly impacts premium
pricing. In stand-alone insurance policies, longer contract durations tend to yield lower premiums
because the probability of breast cancer patients remaining in the status of not having completed
chemotherapy diminishes. However, the relationship between contract length and premiums is
less distinct in endowment insurance policies. This is attributed to the fact that, while the proba-
bility of patients failing to complete the chemotherapy series is relatively low, the risk of mortality
remains high. In practice, most critical illness insurance schemes feature short contract durations,
typically lasting one year, after which they may be renewed with a new, modified contract. Fur-
thermore, the baseline hazard also plays a crucial role in determining insurance premiums. In
stand-alone policies, a higher baseline hazard for the transition from breast cancer diagnosis to
chemotherapy completion and subsequent mortality correlates with lower insurance premiums.
Conversely, in endowment insurance policies, an increase in the baseline hazard for the transition
from diagnosis and chemotherapy completion to the mortality status of patients leads to higher
premiums.
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The clinical implications of this study’s findings are valuable not only for insurance providers
but also for doctors and patients. Beyond informing the calculation of insurance premiums, the
multi-state model based on Cox analysis provides important information regarding patient risk
and prognosis. Doctors can adjust treatment plans to be more personalized and targeted, consid-
ering factors such as the patient’s age, cancer stage and comorbidity status. For patients, themodel
aids in better planning for long-term medical expenses. Those at higher risk of status transitions
can take a more active role in selecting appropriate insurance policies.

This study has not measured the effects of confounding factors within the model, such as
treatment side effects, other health conditions and various elements that could influence the re-
sults and risk estimates. Additionally, the study assumes that transition intensities remain con-
stant over time, which may not be valid for other case studies and populations; therefore, a non-
homogeneous time assumption may be necessary. Furthermore, the availability of data for this
research is quite limited. Consequently, expanding the research population is essential to improve
the reliability of the findings. It is important to consider the limitations outlined in this study to
ensure transparency and enhance the quality of future research.
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